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EDITORIAL 1

Dear members, 
Dear Sir or Madam,

Industrie 4.0 is taking on a key role in main­
taining the success of the mechanical and  
plant engineering industry in the long term.  
At the same time, digitalization, networking  
and the integration of new information and 
 internet  technologies in products and pro­
cesses are opening up new potential for 
 business. Machine learning is an important 
technology for realizing the vision of the future 
encap sulated in Industrie 4.0. As a branch of 
artificial intelligence, machine learning offers 
exciting and new approaches for optimizing 
products and processes in mechanical and 
plant  engineering. 

With this in mind, these guidelines are intended 
to provide orientation and support. They give 
your company a tool for developing its own 
strategy for implementing the methods of 
machine learning and, in particular, reinforce­
ment learning. To this end, they define basic 
principles and terms as well as defining guiding 
questions that will help your company find  
an implementation strategy. Accompanying  
toolkits assist you in answering these guiding 
questions.

The guidelines are the result of the InPulS 
 pro ject on intelligent and self­learning produc­
tion processes. InPulS was executed as a 
precompetitive research project of VDMA Forum 
 Industrie 4.0 in cooperation with the Assoc. 
Institute for Management Cybernetics (IfU)  

and a VDMA industrial working group support­
ing the project. The project was funded by  
the  Mechanical Engineering Research Forum 
 (Forschungskuratorium Maschinenbau – FKM) 
and VDMA between October 1, 2017 and 
 September 30, 2019.

With these guidelines, VDMA has created an 
additional tool for implementing these new 
 technologies in practical applications and has 
thus expanded the range of VDMA guidelines 
on the topic of Industrie 4.0. VDMA Forum 
Industrie 4.0 considers itself a trailblazer into the 
world of Industrie 4.0 for its member companies. 
At the same time, it serves as a networking 
 platform for dialog and the exchange of experi­
ences. With this publication, we hope that we 
have  succeeded in offering a companion that 
provides orientation for mechanical engineering 
companies on the subject of artificial intelligence 
and machine learning and that can provide 
practical support.

We would like to thank Prof. Sabina Jeschke 
from the Assoc. Institute for Management 
Cybernetics (IfU) and her team for the  
scientific preparation of these guidelines.  
We would also like to thank the involved  
VDMA members for their participation in  
the working group  accompanying the project, 
and in particular its chairman Dieter Herzig 
from AZO GmbH + Co. KG.

We hope it makes for exciting reading.
Yours,

Editorial

Dietmar Goericke
Director of VDMA Forum Industrie 4.0 and the 
Mechanical Engineering Research Forum (FKM)

Judith Binzer
VDMA Forum Industrie 4.0
Research & Innovation

Dietmar Goericke

Judith Binzer
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PREFACE 3

Prof. Sabina Jeschke
Berlin and Strömsund, summer 2019

Guidelines for Self-Learning Production Processes
A strategy for implementing reinforcement learning in practical industrial applications

Artificial intelligence is permeating every indus­
try sector and inspiring new technologies in a 
vast range of applications. This driver of inno­
vation is also reshaping the world of industrial 
 production – indeed, it is undeniable that AI  
will raise the production sites of the future to a 
higher level of efficiency. Machine learning is 
viewed as the key to the profitable realization  
of small batch sizes, all the way down to a 
batch size of one.

Two highly promising approaches are currently 
being pursued: supervised and unsupervised 
learning, which is based on large data sets, and 
reinforcement learning (RL), which is based on 
the principle of trial and error. Reinforcement 
learning algorithms find new and previously 
unknown solutions beyond the human under­
standing of processes. This new approach 
opens up enormous potential. 

The impressive results of solutions such as 
Google’s AlphaGo demonstrate what reinforce­
ment learning is capable of. However, the  
ability to learn a game cannot be compared  
to  controlling a production process. A game is  
a strictly monitored, structured environment,  
while in an industrial context, the framework 
conditions and uncertainties of the real world 
come into play and unforeseen events and 
 malfunctions occur. Reinforcement learning 
enables a strategy adapted to these environ­
mental conditions to be learned. Precisely this 
flexibility and adaptability is the core and 
strength of the  reinforcement living method. 

While large companies generally have  
R&D departments in which such procedures 
can be investigated, in­house developments  

Prof. Sabina Jeschke

of this nature present an enormous challenge 
for SMEs. For this majority of German 
 companies, the 4.0 age poses the following  
key questions: 

• How can German SMEs stay competitive  
in the age of Industrie 4.0?  

• Which production processes are particularly 
accessible for the integration of AI in terms  
of the cost­benefit ratio? 

• How can specialist expertise be built up in  
the area of AI in an efficient and sustainable 
 manner?  

• Which new business models or expansions 
are possible thanks to the use of AI? 

The implementation of AI requires changes  
on all levels: Employees need training, new  
job profiles arise, processes change and new 
 business models change the market. These 
guidelines offer an introduction into the topic  
of self­learning process control and serve  
as an orientation aid for implementing such 
 processes. 

The presented application scenario shows that, 
despite the special requirements, it is possible 
to use reinforcement learning methods in an 
industrial context and that these considerably 
raise efficiency.

Germany is investing in researching artificial 
intelligence like never before. It is essential that 
German SMEs seize this opportunity to shape 
the changes that will come! 
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Today, machine learning as a part of Industrie 4.0 is  
viewed as a decisive instrument for raising efficiency and  
an opportunity to develop new business models. In this 
 context,  however, the focus is often placed on digital  
fields of  application; there is a lack of experience in how 
machine learning methods can be used in industry. In 
 particular, the area of reinforcement learning for the 
 auto nomous  control of production processes in industry 
has been barely tapped, if at all.

The goal of these Guidelines for Self­Learning 
Production Processes is therefore to provide 
small and medium­sized mechanical and plant 
engineering companies with a tool for develop­
ing their own strategy for introducing the 
 methods of machine learning, and in particular 
reinforcement learning. In doing so, there will be 
an introduction into the terms and concepts 
used in the context of reinforcement learning 
and a description of the specific characteristics 
of industrial use. As such, these guidelines are 
not a ready­made solution for implementing 
industrial reinforcement learning, but rather 
 provide support in developing an individual 
implementation strategy.

Reinforcement learning is a subfield of 
machine learning which is particularly well­
suited for learning an intelligent control 
 strategy. It is  recommended to first create a 
control strategy in a pilot project with clearly 
defined framework conditions, as many factors 
need to be taken into account for autonomous 
learning to be  successful. These guidelines  
are intended to assist in the selection of such  
a pilot project and subsequently in the formula­
tion of this project as a suitable problem for 
reinforcement learning. 

The guidelines are divided into eight sub­
sections. First, the potential of industrial 
 reinforcement learning and the required change 
of perspective from plant to process control  
are described. There is then an introduction into 
the most important terms used in the context  
of reinforcement learning. The main part of  
the guidelines is made up of a list of guiding 
questions that need to be asked and answered 
in the company in order to find a suitable use 
case and develop an implementation strategy 
for this application. A toolkit is also provided, 
which is aimed at helping companies answer 
these  guiding questions. The guidelines were 
created as part of the InPulS project on intelli­
gent and self­learning production processes 
 initiated by VDMA. During this project, rein­
forcement learning was applied for learning  
an autonomous assembly process and for a 
self­learning  process on a bulk goods conveyor.  
The  experiences, results and findings from 
these example applications will be summarized 
at the end of these guidelines.

Management summary 

The goal of these guidelines is to  
provide  companies with a tool  
for developing their own strategy  
for the industrial application  
of  reinforcement learning.
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Situation at the outset

Today’s automation systems are increasingly 
equipped with a multitude of sensors, which 
are ever more closely networked with one 
another. The state of a system can be deter­
mined using these sensors. As the derived  
data enables new concepts and solutions,  
it harbors significant potential in industrial 
 automation. In order to tap this potential, great 
importance is attached to the method of 
machine learning.

Machine learning is a subfield of artificial 
 intelligence and comprises a large number of 
different concepts and methods, all of which 
use a pool of collected data in order to train a 
model for a desired task. They are divided  
into three categories: supervised learning, 
unsupervised learning and reinforcement learn­
ing. Supervised learning is normally used for 
classification and regression. The methods of 
unsupervised learning can be used to discover 
existing patterns and groups within the data 
and to assign the individual data points to 
these groups. Meanwhile, reinforcement learn­
ing is based on the principle of reward and 
punishment. Figure 1 shows an overview of  
the three principles. These guidelines deal with 
reinforcement learning. A detailed overview  

on the topic of machine learning can be found 
in VDMA’s “Quick Guide – Machine Learning  
in Mechanical and Plant Engineering”  
(VDMA Software and Digitalization). 

The named methods are suitable for use cases 
of various complexity. In an industrial context, 
there is particular potential in the areas of 
 process monitoring, optimization and control. 
Figure 2 provides an overview of the three 
areas.

The area of process monitoring benefits 
directly from the increasing use of sensors  
in production plants. These sensors can be 
used to monitor the current status of the plant 
or make a simple prediction of its future state. 
These technologies enable increased process 
quality thanks to improved monitoring, reduced 
downtimes and a higher level of process reli­
ability. In most cases, simple analysis methods 
are sufficient for realizing this monitoring.

Building on this, a process can be optimized 
with machine learning. This type of process 
optimization offers companies a great deal of 
potential in the form of raised efficiency and 
 lowered costs. During optimization, an iterative 
process is used to find an optimum, e.g., an 
optimal task sequence, and the system moves 

Introduction and objective

Machine learning

Supervised learning Unsupervised 
learning

Reinforcement 
learning

Classification Cluster assignment Interaction with the 
environment

Regression Categorization Reward principles

Figure 1: Overview of the various machine learning methods.
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toward this optimum. Methods including those 
from the field of supervised and unsupervised 
learning are used here, which can be  
deployed for planning, decision support or 
other objectives.

The complexity increases further when the user 
wishes to control a process via machine learn­
ing methods, as optimization and execution on 
the physical system are closely interrelated.  
In process control, these steps are performed 
alternately or simultaneously. When using 
supervised and unsupervised learning methods 
in direct interaction with the process, one 
quickly encounters the limits of what is  possible.  
The use of reinforcement learning is particularly 
promising here, as these methods require  
this direct interaction with the process in order 
to be successful.

There are already numerous example projects 
(see sources) that impressively demonstrate 
the performance of machine learning in pro­
cess monitoring and optimization. However, 
 little research has been carried out into the 
control of industrial processes to date due to  
its high level of complexity. In this context,  
the use of machine learning to control industrial 
processes enables a high degree of adapt­
ability to unforeseen and unmodeled events,  

such as those caused by natural raw material 
fluctuations, variations in the weather and 
wear.

Principle of reinforcement  
learning

Reinforcement learning means learning 
through trial and error. This type of learning is 
similar to that employed by humans during 
early childhood, for example when a child 
learns to walk. In this case, the child knows 
what the target state looks like and tries it out 
according to the principle of trial and error until 
this target state has been achieved. In every 
attempted step, the child learns whether a 
behavior is constructive towards achieving this 
aim. At the beginning, the child’s behavior is 
akin to haphazard experimentation, but then 
becomes more target­oriented over time. If we 
transfer this principle to a production process, 
various control signals are tried out within the 
specified scope of action of the actuators and 
the resulting reaction is evaluated on the basis 
of suitable criteria. The individual criteria are 
then summarized in an evaluation function  
that helps describe the process quality. An 
intelligent control strategy is thus learned over 
time.

Figure 2: Use of machine learning in the various areas of automation with differing levels of complexity.

Process monitoring Process optimization Process control

Provides Situation detection and  
predictive information Planning and decision support Automated response to  

changes in the environment

Offers Higher quality, reduced downtimes,  
lower shortfalls

Higher efficiency, improved usage,  
larger yields, more effective design

Increased production and productivity, 
lower labor costs, less waste

Requires Data sources 
e.g., networked sensors

Process monitoring
+

Mature analytical tools

Process optimization
+

Integration of physical systems,  
e.g., robots

Methods Visualization and descriptive statistics Supervised and unsupervised methods Reinforcement learning

Complexity
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Potential of reinforcement learning

The independent learning of an intelligent 
 control strategy hold enormous potential, as it 
enables process optimization without modeling 
and thus a high level of autonomous flexibility. 

Manual control strategies are based on  
expert knowledge gathered over the course  
of years. If companies lose this expert know­
ledge,  however, they often have difficulties in 
finding a suitable replacement. Reinforcement 
learning can help in developing complex 
 control strategies that function independently  
of expert knowledge. 

A further advantage of strategies learned  
using reinforcement learning is that they leave 
well­trodden paths and can find wholly new 
solutions for known control problems, which  
are often more efficient than conventional 
 strategies.

The best­known application of reinforcement 
learning is AlphaGo – the first computer pro­
gram to beat the current world champion in the 
traditional Chinese game Go. Alongside the 
superiority of artificial intelligence, it is particu­
larly impressive that the program won the game 
using a completely new strategy. As such, the 
solution space of AI was greater than the 
knowledge learned and optimized by humans 
over hundreds of years.

In the area of robotics, too, reinforcement 
 learning has been applied with great success 
for learning a joining task (Schoettler et  
al., 2019) or for a drone flight (Sadeghi and  
Levine, 2016), among other things. 

Simulations are a further tool for testing and 
optimizing parameter settings. However, model­
ing is frequently a problem here. Reinforcement 
learning can help with processes that are too 
complex to be replicated in a simulation. Using 
reinforcement learning, control strategies can 
be learned for both very complex processes 
and complex environmental conditions without 
having to explicitly model these.

Another advantage of reinforcement learning is 
the possibility of determining a control strategy 
in real time where this would be too CPU­inten­
sive using a simulation.

Due to the complexity of the procedure and its 
direct integration in the physical system, the 
industrial application of reinforcement learning 
brings with it a relatively large number of 
requirements at the beginning. Once these 
have been met, numerous examples show that 
self­learned control strategies are clearly 
 superior to those created manually. 

Objective and project background

These guidelines were created as part of the 
InPulS project on intelligent and self­learning 
production processes. Within the scope of  
this project, self­learning process control was 
developed using the example of a pneumatic 
bulk goods conveyor and a force­controlled 
joining process using a robot arm. InPulS  
was executed as a precompetitive research 
project of VDMA Forum Industrie 4.0 in cooper­
ation with the Assoc. Institute for Management 
Cybernetics (IfU) within the Cybernetics Lab  
of RWTH Aachen University and a VDMA 
industrial working group supporting the  
project. The project was funded by the 

Potential
Guideline 
objectives

Risks

Theoretical 
introduction

Selection of a 
pilot project

Recommendations 
for action

Implementation 
strategies

Figure 3: Objective of the guidelines.
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Mechanical  Engineering Research Forum 
(FKM) and VDMA between October 1, 2017 
and  September 30, 2019.

The goal of these guidelines is to develop a 
strategy for the implementation of reinforce­
ment learning in industrial automation. They 
should enable the reader to recognize the 
potential and the necessary framework condi­
tions for industrial application. With guiding 
questions and an accompanying toolkit, they 
are a tool for facilitating the implementation  
of reinforcement learning.

Target group

These guidelines are aimed at companies that 
wish to make their production systems more 
efficient using reinforcement learning and are 
looking for assistance with an implementation 
strategy alongside an orientation guide for the 
risks and potential.

Structure of the guidelines

The differences between a conventional control 
system and self­learning control with reinforce­
ment learning will be explained in the following. 
This chapter will also introduce the necessary 
terminology and principles in the field of rein­
forcement learning. Following this, guiding 
questions and an accompanying toolkit for 
answering these questions will be provided in 
order to facilitate the selection of a suitable pilot 
project. There will then be an overview of the 
latest algorithmic approaches for reinforcement 
learning, which are to serve as the starting 
point for more detailed research. The procedure 
for integrating reinforcement learning will then 
be explained on the basis of a pilot project.  
A particular focus here is the question as to 
which of the various actors is responsible for 
which process step. Finally, the described 
 recommendations for action will be illustrated 
using two actual example applications – an 
autonomous assembly process and a self­ 
learning control system for a pneumatic bulk 
goods conveyor.
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In the learning process, this quantized process 
quality is for evaluating tested control strategies 
and reinforcing good strategies or avoiding bad 
ones. In this way, the system independently 
learns the plant parameters in such a way that 
an optimal process quality is achieved. 

The control strategy learned through reinforce­
ment learning can initially feel rather unusual for 
an expert, as completely new parameter ranges 
are often discovered. But this is exactly where 
the potential of this approach lies. In this con­
text, expert knowledge is no longer used to set 
the plant parameters; instead, the new task of 
the expert is to create a good cost function.  
This must represent the process quality and 
ensure that a reliable and efficient behavior is 
learned. This task is of essential importance to 
the successful implementation of self­learning 
control and must be adapted individually for 
every process. 

If reinforcement learning is to be used, we must 
first fundamentally change the way we look at 
control systems. In a conventional control 
 system, we mainly look at plant parameters in 
the form of the existing actuators and their 
respective adjustment ranges. These parame­
ters are set on the basis of characteristic values 
known from experience or literature and are 
changed until a good control result is observed. 

With control via reinforcement learning, the 
parameters of individual actuators are no longer 
considered; instead, parameters must be found 
that describe the process as a whole. As a 
result of this, the plant is initially parameter­free, 
with only the process parameters remaining. 
Therefore, it is necessary to describe what 
 characterizes a good process. This process 
quality is then quantized using an evaluation 
function, which is known as a cost function in a 
reinforcement learning context.  

From plant to process control

Process 
control

What characterizes a good process?

How can process quality be quantized?

What influence do environmental factors have?

Plant control

What are typical behavioral sequences 
for these actuators?

In which range can the actuators be set?

Which control parameters have 
worked well in the past?

Figure 4: Reinforcement learning means a change of perspective: from plant to process control.
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5

Agent
(actor)

Environment
(physical system)

State 𝑠𝑠!

Variable 𝑎𝑎!
Evaluation

Cost value 𝑟𝑟!

Machine
intelligence

Figure 5: The reinforcement learning cycle: The agent selects an action or determines its variables, and in doing so influences its  environment. It 
receives a new state and an evaluation of the performed action as feedback.

Agent

The agent is an autonomous software program 
that assumes the role of the decision­maker in 
reinforcement learning. In each time step, it 
receives information on the current state of the 
environment or the system and a reward for 
performing the last action. Using this state and 
the current cost function, the agent determines 
the action for the next time step.

Environment

The environment is represented by the system 
to be controlled. This can be a production line, 
for instance. This system is characterized by a 
current state and can be directly influenced by 
actions of the agent.

Reinforcement learning allows a machine, i.e.  
a plant control system, to learn a complex 
 relationship independently. The entire process 
does not need to be known in order to do this; 
instead, the solution is found and implemented 
step by step through trial and error. The princi­
ple and the necessary terminology are defined 
in the following:

The formal principle is shown in Figure 5.  
An agent influences its environment using  
one or more actuators. This action is then 
 evaluated using a cost function. As feedback, 
the agent receives the new state and a cost 
value based on the cost function as an 
 evaluation. On the basis of this, it performs 
another action in the next iterative step. This 
process is iterated until a sufficiently good 
result has been achieved. 

Reinforcement learning for  
industrial applications
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Training and value creation phase

In reinforcement learning, a distinction is drawn 
between two phases: the training phase and the 
value creation phase. 

During training, as many process parameters as 
possible must be consciously chosen and 
checked. Therefore, the training environment 
should ideally be controllable and it should be 
possible for a process expert to explain the 
behavior of the system in this environment.  
In addition, the process expert must generate 
the greatest possible diversity of training data. 
In doing so, they should answer questions such 
as: How do environmental influences such as 
temperature, humidity, etc. affect the process? 
What are the different materials that could be 
produced/conveyed/processed? Are people / 
other machines also involved in the process and 
do these behave differently? All of these differ­
ent scenarios must be depicted in the training 
data. If there is a sufficient level of variance in 
the training data, the reinforcement learning 
agent learns how to cover the various scenarios 
in its strategy. 

After the training is complete, the value creation 
phase begins. In this phase, it is assumed that a 
sensible, optimal strategy has been found, 
which can now be applied. The exact conditions 
of the process must then no longer be strictly 
controlled in the production environment. 
Instead, the assumption is made that the 
agent’s strategy is adapted to the various 
 process conditions and that these are recog­
nized through the state of the system.

During the value creation phase, a reinforce­
ment learning strategy can be transferred to 
 various machines, sites, etc. However, if the 
new behavior deviates too strongly from the 
learned behavior, it may be necessary to retrain 
the process (and thus switch to another training 
phase). Figure 6 shows the two phases and 
their properties.

State and state space

The state of the system is described by means 
of the various sensor signals. Depending on the 
process, this can contain a camera on the end 
effector of a robot arm, or temperature, pres­
sure, radiation or any other sensors.

The state space describes all states the system 
can assume. As such, it is dependent on the 
measuring range of the sensors among other 
factors.

Action / action space

An action contains the signals for all adjustable 
actuators of the system. 

Accordingly, the action space describes the 
 possible adjustment range of the actuators. 

Cost function

The cost function describes the current process 
quality. The costs are not economic costs, but 
rather a reward or punishment for the action of 
an agent. The cost function is evaluated in each 
step. Following this, the actions of the next step 
are determined on the basis of the current cost 
function. This brings about the transformation 
from control of the plant parameters to the 
direct control of the process. The cost function 
must consider the process directly in order to 
optimize it in a targeted way. The quality of the 
cost function is essential for the success of 
self­learning control. This function makes it 
 possible to let go of old control patterns.

Policy

In reinforcement learning, the policy describes 
the strategy of the agent. This depends on the 
current state of the system. As such, a strategy 
is learned that can optimally react to various 
states. Therefore, the term “policy” describes a 
kind of intelligent control strategy in a reinforce­
ment learning context.
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What can be learned with reinforcement 
learning? And what cannot be learned?

Reinforcement learning means learning through 
trial and error. In industrial applications in partic­
ular, this has far­reaching consequences for the 
possible projects and the necessary framework 
conditions. Therefore, as illustrated in Figure 7, 
industrial reinforcement learning is character­
ized by the special requirements in terms of 
robustness, safety and the data efficiency of  
the algorithms. 

A certain quantity of resources is needed in 
order to train a reinforcement learning model. 
These resources, often called training costs, 
should be kept as low as possible. The time 
expenditure is the most significant cost factor 
here. To train a reinforcement learning strategy, 
a large quantity of data needs to be generated 
by performing test runs of the real process.  
To this end, the process needs to be short and 
it must be possible to perform it repeatedly.

Training phase 
(learning phase)

- Structured environment

- Known task

- Learning goal is defined via the 

cost function

Agent tries something new 

Value creation phase 
(use phase)

- Unstructured environment

- Uncertainties in the task

- User must no longer define an 

explicit cost function

Agent executes what it has learned

Figure 6: The application of reinforcement learning is divided into the training and the value creation phase.

7

Industrial
reinforcement

learning

Reinforcement
learning

Robust 
against

uncertainties
Careful

exploration
Data-efficient

training

Figure 7: Industrial reinforcement learning places special demands on robustness, safety and data efficiency.
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Furthermore, new and potentially unstable 
parameter settings are tested during training.  
In a simulation, these parameter settings can be 
tested without any danger. In a real system, 
however, the application requires careful testing 
of the unknown parameter settings in order to 
guarantee safety at all times. To this end, the 
real systems must be as tolerant to errors as 
possible, or it must be possible to detect the 
errors in good time and remedy them. Further­
more, the careful exploration of the environment 
must be taken into account even when choosing 
an algorithm.

The error tolerance of the system also plays an 
important role in its robustness against un ­
certainties. However, in this case it is also 
important to select or design the reinforcement 
learning method in such a way that it reacts 
robustly to uncertainties in its environment.

The training costs also comprise material 
resources such as the raw materials consumed 
by a process. These costs should also be  
kept as low as possible. On the whole, these 
training costs therefore place a particular 
demand on the data efficiency of the used 
algorithm.

As an alternative to the real process, training 
data can also be generated using a simulation. 
If a meaningful simulation of the process is 
 possible, this makes it easier to generate train­
ing data. The time expenditure plays a sub­
ordinate sole in a simulation, as simulations  
do not  necessarily have to run in real time and 
can be performed in parallel. Process faults  
do not  represent a danger in a simulation  
and raw material costs can be ignored com­
pletely. 
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Process analysis: 
How can the existing system be 
 characterized?

In this guiding question, it is determined 
whether a process is suitable for optimization 
with reinforcement learning. Various system 
categories are presented, such as the differ­
ence between discrete and continuous 
 systems, partially and completely observable 
 systems, and the frequent and rare feedback  
of quality parameters. The assignment of a 
 process to one of these classes helps the user 
gain a better understanding of the optimization 
process through reinforcement learning.

Which target values are to be optimized  
in the cost function? 

Once a possible process has been found, it 
must be examined in greater detail. Here it  
is important to define the target value to be 
 optimized. The target value is part of the cost 
 function and is crucial, as it characterizes the 
process quality. It must be possible to measure 
this value via quality parameters and influence 
it through the existing actuators. One example 
of such a target value is the flow rate in a pipe.

What are the state and action spaces  
of my process? 

For a reinforcement learning procedure, input 
values are required in the form of measure­
ment signals, as well as output values in  
the form of setting parameters. The inbound 
 sensors describe the state space of the 
 system. It must be determined whether the 
sensors describe the state of the system with 
sufficient precision to optimize the system 
behavior. The output signals for the existing 
controller describe the action space. Here,  
too, the existing actuators must have enough 
room for maneuver so that an optimum can  

Reinforcement learning is a highly promising 
option for the independent learning of complex 
control strategies. However, the implementation 
of such a strategy is relatively complex. It is 
therefore recommended to deploy this method 
for the first time within the scope of a suitable 
pilot project. This allows the necessary person­
nel and material resources to be built up slowly 
and enables the initial successes to be made 
visible. Important aspects for finding and 
 executing a suitable pilot project are illustrated 
on the basis of the following guiding questions. 
The toolkit that follows in the next chapter 
 provides assistance in answering the guiding 
questions introduced below.

Guiding questions

State space

Guiding 
questions

Time 
expenditure

Situation of 
competencies

Cost function

Process analysis

Required 
competencies

Action space

Machine learning 
hardware

Sensors

Figure 8: Overview of the important guiding questions regarding 
the process analysis (green), personnel resources (gray)  
and material resources (purple), which are important for an 
implementation strategy.
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be found that is not restricted by the limit 
 values of the actuators. To this end, the follow­
ing questions must be answered: Can the 
 system be controlled continuously? How 
 precise is the controller? 

Personnel resources: 
Which competencies are required?

After describing the process, the personnel 
requirements are now examined. Which 
 personnel resources need to be present in the 
company in order to conduct a pilot project  
for the use of reinforcement learning in the 
respective company? A particular focus is 
placed on three different groups of people 
here. First of all, expert knowledge in the  
field of reinforcement learning is required.  
In addition, internal experts are needed who  
have a good knowledge of the process to  
be optimized. Among others, long­serving 
employees who have first­hand experience in 
manually optimizing the system are suitable  
for this. Finally, an experienced software 
 technician is indispensable. In particular, this 
 technician is responsible for providing an 
 efficient and robust implementation for the 
application in the value creation phase. 

Personnel resources: 
Where should the competencies lie?

For the three groups – reinforcement learning 
experts, process experts and software 
 technicians – it must be decided where these 
competencies should lie.

These competencies can either be in the com­
pany itself, procured through external service 
providers or acquired through cooperation  
with universities. It is also conceivable that 
 multiple SMEs collaborate in order to build up 
this knowledge together. In this connection,  
the  following questions must be considered:  
How can reinforcement learning be built up as 
a competency in the company over the long 
term? Are there further possible use cases in 
the company in which the acquired competen­
cies can be applied? If external experts are 
involved, how can it be ensured that the sys­
tems can also be operated, maintained and 
expanded later on?

Material resources: 
How can the plant be expanded? 

In most use cases, special hardware is  
needed for training the reinforcement learning 
methods. The requirements for this hardware 
need to be specified. These are performance 
requirements that are dependent on the type 
and quantity of the data to be processed. Any 
real­time requirements also have to be taken 
into account. In addition, the communication 
between the existing interfaces and the new 
reinforcement learning module must be 
 examined in terms of real­time requirements 
and system stability.
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1. How can the existing system be 
 characterized?
In the context of reinforcement learning it is 
important to distinguish between continuous and 
discrete processes and between state and 
action spaces. Discrete state and action spaces 
can be illustrated using the “grid world” shown in 
Figure 9. 

Here, an agent is standing in a field on a grid. 
The agent cannot be placed freely on the grid; 
instead, it has (5x5) discrete options. In this 
context, the state of the agent consists of its 
current location. Because the current location 
can only have a discrete state, the state space 
of the agent is also discrete. The action space is 
also discrete: The available actions are “go one 
step up,” “to the right,” “to the left” or “down.”

In contrast, the state of a robot arm can be 
described through its current position, speed 
and acceleration in all joints. As all of these 
 values can be adjusted continuously, this is a 
continuous state space. The action space of 
such a robot arm often consists of a torque 
 signal for each joint and is thus also continuous. 

Another important property for characterizing 
processes is observability. Here, a distinction is 
made between partially observable systems and 
completely observable systems. In a partially 
observable system, some internal system states 
of the process cannot be measured directly. One 
example of this is a pipeline that is equipped with 
sensors at certain points. This means that, 
although the system is observable, the flow 
behavior is not known at all places in the pipe. 
The robot arm again serves as a suitable 
 example of a completely observable system. 
Here, the attached sensors and the robot 
 kinematics can be used to determine the current 
location and speed of every component with 
great accuracy.

The background to the guiding questions posed 
in the previous section will be explained in the 
following. With this knowledge, it should be 
determined whether a process is suitable for 
reinforcement learning, or which requirements 
need to be put in place so that such a project 
can be realized successfully.

Process analysis

Before selecting the reinforcement learning 
method and planning the next steps of the 
 project, the project to be optimized needs to be 
examined in detail. Here, the focus is on becom­
ing aware of the process characteristics and 
their influence on the subsequent selection of 
the suitable reinforcement learning concept. 
This is where the aforementioned change in 
thinking from plant to process control has to 
take place. With this understanding, the pro­
cess can be described in accordance with the 
“reinforcement learning philosophy.” Figure 10 
provides an overview of the most important 
terms used for describing the process to be 
analyzed.

Toolkit 
for solving guiding questions

Figure 9: Discrete state and action spaces using the 
example of a grid world environment.
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In order to analyze the process further, the feed­
back of quality parameters should be examined 
next. Is feedback possible at certain times, or 
only after the process is complete? An example 
of this would be a casting machine, in which  
the quality can only be determined following the 
first cast and the subsequent cooling phase. 
 Conversely, if the flow through a bulk goods 
conveyor is to be monitored, the conveyed 
 product can be checked continuously using 
scales. Of course, there are also examples in 
which feedback of quality parameters takes 
place regularly, but is not possible on a con­
tinuous basis. 

A further aspect to be considered is possible 
dead time of the system. Depending on the 
 process in question, this can range from a few 
seconds to several hours. This time has an 
important influence on the time expenditure for 
training the system and should therefore be 
low. If there is a significant amount of dead 
time, it is even more important to select espe­
cially data­efficient reinforcement learning 
methods.

2. Which target values are 
to be optimized? 
Following a precise analysis of the process 
characteristics, the target values to be optimized 
must be determined in the next step. All target 
values describe the process quality. On the 
basis of these values, it can be ascertained 
whether a process is well parametrized for the 
current task. These target values are then sum­
marized in the cost function and optimized using 
a reinforcement learning approach. 

In doing so, it is important to know the exact 
relationship between a target value and the pro­
cess. A reinforcement learning method encour­
ages what was specified through the target 
value and not necessarily what was intended by 
the process expert. For example, if a large 
amount of material is to be conveyed using a 
bulk goods conveyor, one can initially assume 
that a high conveying speed of the product 
leads to a large amount of conveyed material 
and, accordingly, to a good process. If the 
 conveying speed is specified as a target value, 
however, it is possible that only a few particles 

Figure 10: Toolkit for analyzing the process.
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of the material are conveyed if these also reach 
a very high speed. As such, it is more sensible 
to select the weight of the conveyed material at 
the outlet of the bulk goods conveyor as a target 
value to be optimized. 

3. What are the state and action spaces 
of my process? 
After determining the target value, the state 
and action space can be defined. First, the 
existing sensors are observed. If these do  
not fully describe the state space, additional 
 sensors need to be installed. The type of the 
sensors must also be examined in greater 
detail. Here, a differentiation can be made 
between sensors that only collect a single data 
point and those that gather a vector of data 
points. The first  category includes temperature 
measurement sensors that gather a single 
 temperature value, while the second group  
is made up of cameras that record a large 
number of pixels at the same time, among 
 others. This differentiation is important, as these 
 characteristics greatly influence the amount  
of data collected and thereby the computing 
capacity needed. 

Not all reinforcement learning methods are 
 suitable for large state spaces. A large state 
space is one from a size of around 12 dimen­
sions, that is 12 individual sensor values. 

Personnel resources

1. Which competencies are required?
To successfully conduct a pilot project with rein­
forcement learning in an industrial application, a 
broad range of different competencies are 
required. Figure 11 provides an overview of the 
necessary personnel resources and their compe­
tencies.

First of all, a reinforcement learning expert is 
required. This person should have a knowledge 
of mathematics, control engineering, optimiza­
tion and statistics. Moreover, they need basic 
technical understanding tailored to the respec­
tive use case. In the area of machine learning, 
this expert must have in­depth knowledge in the 
areas of neural networks and reinforcement 
learning in particular, including knowledge of 
data visualization and interpretation. Reinforce­
ment learning methods are often heavily depen­
dent on their hyperparameters. These configura­
tion variables define the exact architecture of the 
neural network and the training process.  
For example, the number of layers and neurons 
in the neural network are hyperparameters, as is 
the number of training iterations. A suitable rein­
forcement learning expert should already have 
experience in adjusting these hyperparameters. 
Alongside knowledge of machine learning, an 
intermediate level of programming expertise is 
also indispensable for the reinforcement learning 
expert. Although a software technician is primar­
ily responsible for the design and implementa­
tion of a good software architecture, the rein­
forcement learning expert must also have good 
knowledge in this area, as machine learning and 
its implementation in program code go hand­in­
hand. This includes proficiency in version control 
in software projects. The reinforcement learning 
expert should also know about conventional soft­
ware frameworks for machine learning, such as 
TensorFlow or PyTorch. 

A software technician is essential for software 
that can be maintained and used. This individ­
ual is responsible for designing the software 
architecture and implementing it in the form of a 
deployable software solution. Therefore, the 
software technician needs to have a very high 
level of expertise in programming and the 
design of software architectures. Furthermore, 

Programming knowledge 
(very high level)

Experience in the 
area of software design 

architectures

Basic understanding of 
reinforcement learning

Technical 
understanding

Process expert Software technicianReinforcement 
learning expert

Knowledge of machine 
learning – especially 

reinforcement learning

Programming knowledge 
(medium level): 

Python, TensorFlow, 
version control, 

data visualization

Many years of experience 
with the process

Basic knowledge of 
measuring technology

Basic knowledge of 
reinforcement learning 

training concepts

TensorFlow knowledge

Figure 11: Toolkit for describing personnel resources.
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this person should have good knowledge in the 
field of algorithms and data structures in order 
to implement efficient reinforcement learning 
algorithms.

The process expert has the necessary knowl­
edge of the plant and the process. Process 
experts often have many years of experience of 
the process and have a particularly good knowl­
edge of the plant parameters. This knowledge is 
required for determining the state and action 
space, finding a sensible cost function and 
defining an initial policy. For this purpose, the 
process expert must acquire a basic under­
standing of reinforcement learning in order to 
view the known process in line with the rein­
forcement learning philosophy. Furthermore, as 
the process expert is responsible for selecting 
suitable sensors, they also need expertise in 
measuring technology.

2. Where should the competencies lie?
Not all competencies need to be in the company 
itself. Depending on the internal company 
 strategy, it can be prudent to outsource some 
competencies to cooperation partners. 

In most cases, the reinforcement learning 
expert is not yet employed by the company 
itself. In this case, it is prudent to obtain external 
assistance in the form of a cooperation with a 
university or an external service provider.  
If further reinforcement learning projects are 
planned following the pilot project, it can be 
 sensible to build up these competencies in the 
company itself. 

If the company already has a software tech-
nician, their competencies should be used 
where possible. If not, there are numerous ways 
to obtain this expertise. If there is an existing 
cooperation with a university, this can be 
acquired in the areas of both reinforcement 
learning and software engineering. Alternatively, 
there are several options for commissioning 
external service providers in the field of software 
engineering. 

The competencies of the process expert lie 
within the company. The necessary knowledge 
of the plant, its parameters and its requirements 
can only be found here.

The time expenditure of the three groups of 
people named above (reinforcement learning 
expert, process expert and software technician) 
for implementing the project must be estimated. 
It may be advantageous to obtain external 
expert knowledge here. It is recommended to 
always estimate the feasibility and cost of exter­
nal experts, even if all three areas of expertise 
are present in the company itself.

Material resources

A special hardware architecture is often needed 
for training neural networks. The following 
 section will provide assistance in selecting this 
hardware. After choosing this hardware, the 
interfaces between the hardware and the plant 
control system also have to be defined. This 
interface must be examined, defined and imple­
mented individually on a case­by­case basis.

1. What hardware do I need  
for a self- learning process?
On a home computer, computing processes  
are carried out on the central processing unit 
(CPU). Today, neural networks are increasingly 
trained on the graphic card, the GPU (graphics 
processing unit). The difference between  
CPUs and GPUs is easy to explain: CPUs  

In-house 
expertise

University 
cooperation

External 
software 

development

Figure 12: The various competencies can also be brought into the 
 company through a cooperation with universities or by involving external 
software developers.



20 GUIDELINES FOR SELF-LEARNING PRODUCTION PROCESSES

are able to  execute a few, but very complex, 
calculations. The advantage of GPUs, on the 
other hand, is that a large number of simple 
calculations can be performed in parallel. This 
is enormously beneficial for training neural net­
works in terms of speed, making them ideally 
suited to this application. Other processors  
can also be used for training neural networks. 
For example, Google tensor processors, or 
TPUs, were developed specifically for machine 
learning applications. In this case, a suitable 
architecture needs to be selected depending 
on the use case, the  reinforcement learning 
method and the data  quantity. In general, GPUs 
are well­suited for training neural networks, 
especially in the  context of reinforcement 
 learning.

2. What are the hardware requirements?
The performance requirements are dependent 
on the respective use case and cannot be 
 universally specified.

As the GPU normally performs the largest 
 number of calculations, special attention should 
be paid to using a powerful GPU. In the case  
of very complex calculations, TPUs (tensor 
 processing units) optimized for the training of 
neural networks can be used. It is currently 
 possible to rent processing time on TPUs. 
 Furthermore, some of the latest architectures 
possess a small number of TPUs. 

Alongside the actual performance of GPUs, the 
graphics memory on the graphics card is an 
important factor. Although this does not directly 
accelerate the calculations, a larger graphics 
memory allows more data to be processed on 
the GPU at the same time. In addition, it should 
be ensured that the GPUs have a high memory 
bandwidth and clock rate, as these make a key 
contribution to data transparency between the 
memory modules.

Even though the CPU does not normally 
 perform the main calculations, it still takes on 
important tasks in the background. For instance, 
it loads the data to the main and graphics 
 memory. A certain amount of computing power 
is needed here so that no bottleneck arises.  
As a rough guideline, mid­ to high­class end 
user CPUs are currently sufficient.

29%4%

RL hardware Plant control Plant

Figure 13: In order to use reinforcement learning, special hardware is needed. In particular, the interfaces between this hardware 
and the plant control system need to be defined.



GUIDELINES FOR SELF-LEARNING PRODUCTION PROCESSES 21

In the field of policy searches, a differentiation 
is made between procedures that use a deriva­
tive of the policy and those that do not need a 
derivative. The first are called policy gradient 
methods, while the second group are known as 
derivative-free optimization methods. 

Value function

A second concept upon which several 
 reinforcement learning methods are based  
is known as the value function. This value 
 function should be differentiated from the  
cost  function. It provides an estimate of the 
expected costs for every time step up to the 
completion of the training episode. These 
 minimal, expected future costs are unknown 
and are thus estimated using a neural network.  
The estimated value function can be used to 
determine the optimal action for every state, 
i.e. the action that minimizes the expected 
costs. So that the value function converges 
more quickly, mathematical approaches can  
be used that enable the estimated costs to  
be adapted after each step in order to obtain  
a more accurate value function. This method  
is based on the principle of dynamic program­
ming.

Reinforcement learning methods generally 
begin with a data set. This data set contains the 
current state, the action performed and the 
associated costs for every time step of a training 
episode. The data set can then be used in 
 various ways in order to optimize the intelligent 
control strategy – or the policy – learned by the 
algorithm. Standard reinforcement learning 
methods calculate at least one of the following 
values: a direct estimate of the current policy, an 
estimate of the value function, or an estimate of 
the system dynamics. The following section will 
introduce these terms and concepts and explain 
some of the methods based on these concepts.

Policy search

The policy search, or direct policy optimization, 
attempts to learn a parametrized policy on  
the basis of the collected data in an iterative 
 process. To this end, the parameters of the 
 policy are iteratively changed in such a way that 
the cost function is minimized. This procedure 
can be regarded as a numerical optimization 
problem. Figure 14 shows a schematic repre­
sentation of a direct policy search. One decisive 
disadvantage of the direct policy search is the 
limitation in the number of parameters. The 
direct policy search currently only  produces 
 satisfactory results for policies with fewer than 
100 parameters (Deisenroth et al., 2013). This 
limited complexity also restricts complexity in 
the task to be learned.

Algorithmic approaches 
for self-learning production processes
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Figure 14: Direct policy search.
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Model-free/model-based procedure

In the context of reinforcement learning, a 
 distinction is drawn between model­based and 
model­free methods. The schematic represen­
tation in Figure 15 shows a comparison of 
model­based and model­free procedures.

The model describes the dynamic of the  system, 
i.e. how the chosen action affects the  system in 
each state of the agent. In a  continuous system, 
this can be interpreted as the  probability of a 
transition from a state A to a state B when a 
certain action is performed. This transition 
behavior is shown in Figure 16. One discrete 
example of this is chess. A proficient chess 
player has gathered knowledge of how their 
opponent will react and can thus go through  
the expected course of play in their head and 
choose the best scenario. Therefore, a model­ 
based procedure will first learn the system 
dynamics. Using this knowledge, the reaction  
of the system can then be anticipated. 

Model­free procedures do not use such a 
description of the dynamics; they are usually 
based on an estimate of the value function. 
However, this also means that they cannot  
use any knowledge of the dynamics.

Model­based procedures are generally far more 
data­efficient than model­free reinforcement 
learning procedures. As data efficiency is a key 
criterion for the industrial use of reinforcement 
learning, model­based procedures are often 
preferable in this context.

Methods

Most reinforcement learning procedures are 
based on these principles. However, not all of 
them can be clearly assigned to a category; 
more complex methods frequently combine 
more than one of these principles. Two highly 
developed groups of algorithms are the actor­
critic method and the guided policy search 
method. Both of these approaches combine the 
policy search concept with a value function.

Actor-critic method

Actor­critic methods are classified as model­free 
procedures. They combine the principle of a 
direct policy search using a policy gradient and a 
value function. They consist of two parts, with 
each represented by a neural network. Figure 17 
shows the structure of such an actor­critic 
method.
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Figure 15: Difference between model­free and model­based reinforcement learning methods.
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The task of the first neural network, known as 
the critic network, is to learn an estimate of the 
value function. This can provide an estimate of 
the minimum required cost up to the end of the 
episode for each state and time. 

The second network, also known as the actor 
network, uses the current estimate of the value 
function to minimize the costs of the existing 
policy using a gradient procedure. In a training 
episode, as usual, a data set consisting of 
actions, states and costs is collected for the 
training episode. First, the critics are adapted on 
the basis of this data. Once the critics have 
determined an up­to­date estimate of the value 
function, the actor improves the policy, which is 
then forwarded to the environment. 

Guided policy search

Guided policy search methods are among the 
model­based procedures. As described above, 
a description of the dynamic transition behavior 
is first learned. A stochastic dynamic is a 
 pre requisite for this. This means that an action 
executed in a certain state does not always 
lead to the same next state, but can instead 
lead to  different states with a certain degree  
of  probability.

The special feature of a guided policy search 
method is that multiple local solutions can  
be learned for different training conditions. 
These training conditions can be, for example, 
different starting points for a learned movement 
of a robot arm, or different climate conditions 
when operating a production plant. A solution 
for a specific training condition is then called 
the local solution or the local policy. Learning  
a  policy for a condition is a much more simple 
task than immediately training a policy that 
applies for all the different settings. After train­
ing the local solutions, a global solution is 
learned by means of a supervised training 
method. This global  policy generalizes, which 
also represents a control strategy for the states 
outside the  training conditions.

17

Environment

State

Action

Value 
Function value

State Critic

Actor
16

State
A

State
B

State
C

75%

Action
1

25%

+

Figure 17: An actor­critic method consists of two neural networks, which 
are always trained alternately.

Figure 16: The dynamic model provides the probabilities of a transition 
from one state to another. If the agent is in state A and performs action 1, 
there is a 75% chance it will end up in state B and a 25% chance it will 
 finish in state C.
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industrial use described in these guidelines.  
The algorithmic approaches described above 
can provide a starting point here.

4. Coordination
The process analysis is mainly performed by 
the process expert, while the selection of a 
reinforcement learning approach is the task of 
the reinforcement learning expert. Once these 
two tasks have been performed, the experts 
need to consult each other again. When doing 
so, the data necessary for the reinforcement 
learning approach and the existing sensors  
and actuators must be considered in particular. 
During this step, the requirements and 
 prerequisites must be iteratively adapted  
until a match has been found, at which point 
the planning is completed and the realization 
phase can begin.

5. Implementation
The first step in the realization phase is the 
implementation. To this end, the reinforcement 
learning expert and the software technician 
need to be involved. It can also be prudent to 
involve a fourth expert, a control technician, 
who has detailed knowledge of the current 
plant. Together with the software technician, 
this person can define and implement the 
 interface between the existing plant and the 
reinforcement learning hardware. The rein­
forcement learning expert and the software 
technician then work together to devise an 
 initial prototype of the reinforcement learning 
method.

6. Prototypical learning cycles 
Once an initial software design has been 
 created, the first prototypical learning cycles can 
be executed. The data from these cycles must 
then be visualized and interpreted. The hyper­
parameters of the neural network can then be 
adapted on the basis of the visualization during 
the remainder of the process. Moreover, an 
 initial evaluation and a possible adaptation of 
the cost function can be performed in this step. 

The use cases for reinforcement learning in 
industry are varied. In most cases, however, 
the procedure for integrating such a method 
follows a clearly defined pattern. This proce­
dure can be divided into two phases, the plan­
ning and the realization phase. All in all, the 
integration can be split into eight successive 
steps. Figure 18 shows a schedule for the 
 integration process.

1. Identification of a pilot project
First of all, a suitable pilot project needs  
to be found. The special requirements for 
industrial application must be considered in 
particular here. These include the robustness 
of the algorithms and the process, safety 
during training and the data efficiency of  
the reinforcement learning approach. The 
potential of a reinforcement learning  
method for the pilot project must also be  
evaluated.

2. Process analysis
During this step, the process is examined in 
detail. This is mainly within the process expert’s 
area of responsibility, as sound knowledge of 
the plant and the sensors is required. The 
 guiding questions and the developed toolkit 
can be used for assistance here. It is particu­
larly important to view the process with the  
new “reinforcement learning philosophy.” To 
this end, the agent, the environment and the 
accompanying state and action spaces must 
be defined. The optimization goal must then  
be defined and the components that are 
 relevant for the cost function identified. Next, 
the currently available sensors and their  
quality must be examined. 

3. Selection of the reinforcement learning 
approach
After analyzing the process, this knowledge  
can be used to choose a suitable reinforcement 
learning approach. This is the task of the 
 reinforcement learning expert. The expert must 
take into account the special requirements for 

Procedure for integrating a 
reinforcement learning method
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should be referred to as a criterion here. In 
addition, the reinforcement learning expert 
should analyze the convergence behavior 
during training.

Once a sufficient control strategy performance 
has been validated, it is possible to move from 
the training phase to the value creation phase. 
In order to do this, the control strategy must 
first be given a suitable format. Afterwards, this 
strategy can be applied in the value creation 
environment, which is not as strictly controlled 
as the training environment. The performance 
of the control strategy should be evaluated 
again in this environment, too.

Following the prototypical learning cycles, initial 
successes should confirm the choice of rein­
forcement learning algorithm, state and action 
space and cost function.

7. Code cleanup
Code cleanup comes at the end of the realiza­
tion phase. Here, it is the task of the software 
technician to simplify the program code created 
during the course of the development and opti­
mize it in line with efficiency criteria. In doing so, 
it is especially important to ensure that the doc­
umentation is of high quality. This documenta­
tion makes it easier to maintain the system and 
adapt the program code at a later stage.

8. Learning cycles
After code cleanup, learning cycles can again 
be run using the created software tool. With the 
data generated in this manner, the process and 
reinforcement learning experts can jointly eval­
uate the performance of the intelligent control 
strategy that has been learned. The increase in 
efficiency compared to the original behavior 
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Figure 18: The process for integrating reinforcement learning consists of eight steps and is split into a planning and a realization 
phase in particular.
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Within the scope of the InPulS project, a 
 scientific demonstrator was built at the Assoc. 
Institute for Management Cybernetics, which 
uses reinforcement learning to learn an auto­
nomous, force­controlled assembly process.  
The long­term objective is to develop an 
 auto nomous assembly cell for non­plannable 
assembly situations. In this assembly cell, a 
robot  independently learns an assembly move­
ment without requiring an exact kinematic and 
dynamic description of the gripper system  
or the component. As an example of this 

assembly process, a joining task was exam­
ined, which is among the classic evaluation 
scenarios in robotics. Joining tasks entail a 
large number of  contacts, and are thus com­
plex learning tasks that often cannot be learned 
in simulations. In industrial applications, these 
pin­in­hole tasks often require a higher level  
of positioning  accuracy than is possible with 
the latest robots. 

Figure 19: Autonomous assembly process on the basis of a pin­in­hole task.

Example application

Autonomous assembly process

Table 1: Success rate of the autonomous assembly process with various pin sizes.

Ø hole 
(mm)

20 20 20 20 20 20 20 20 20

Ø pin  
(mm)

19.9 19.8 19.7 19.6 19.5 19.4 19.3 19.2 19.1

Success 
rate

3/10 8/10 8/10 8/10 10/10 10/10 10/10 10/10 10/10
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Figure 20: Autonomous joining process with differently formed objects.

point to a destination. Following this, the cost 
function is used to determine what is currently 
the best trajectory and a corresponding policy. 
New movements are then tested in the next 
iteration on the basis of the current best 
 trajectory.

Results

The scenario was carried out with a hole 
 diameter of 20 mm and various pin sizes in 
order to test the precision during assembly.  
The results of the test runs with pin diameters 
of between 19.1 and 19.9 mm are shown in 
Table 1. The success rate falls considerably 
with a pin diameter of 19.9 mm. Therefore, a 
precision of around 0.2 mm is possible with this 
method. It should be noted that a robot arm 
with a high position deviation was used for this 
scenario. A robot with a lower starting deviation 
may be capable of even greater precision. 

Reinforcement learning setting

In the scientific demonstrator, a six­axis robot 
arm is used to learn how to insert a cylindrical 
pin in a hole. The state space of the robot 
 consists of six joint angle settings and six 
accompanying joint angle speeds. Accordingly, 
the action space contains six torques, one for 
each joint. The task is to move the end effector 
of the robot arm to a predefined target coordi­
nate. Accordingly, the cost function is defined 
by the distance between the end effector and 
the  target point.

 
Learning process

The procedure for learning the assembly 
 process corresponds to that of a child who 
learns to put a building block in the correct 
hole. To learn the movement, a method based 
on the guided policy search concept is applied. 
First of all, five random movement trajectories 
are tried out. In this case, the term “trajectory” 
describes the movement performed by the 
robot along a path from a specified starting 
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The second application scenario was also real­
ized within the scope of the InPulS project in the 
development center of AZO GmbH + Co. KG. In 
this scenario, a process engineering problem 
was addressed using the example of a pneu­
matic bulk goods conveyor. 

Application scenario

In industry, pneumatic conveyors are always 
used where a product, or bulk goods to be more 
precise, needs to be transported from one pro­
duction location to the next. Bulk goods can be 
flour, sand or plastic powder, for example. The 
bulk goods are conveyed using a gas, typically 
air. In doing so, a distinction is drawn between 
pressure and vacuum conveying. In pressure 
conveying, the flow of air is created by generat­
ing pressure at the inlet, while in vacuum con­
veying this effect is achieved by generating a 
vacuum at the outlet (Hilgraf, 2019). In the use 
case in question, the air flow was created by a 
fan at the outlet. The fan speed and thereby 
also the air volume flow could be controlled by 
means of a frequency converter. The material 
flow at the inlet takes place via a metering 

screw, the metering capacity of which can be 
controlled via the rotation speed. The size of 
such industrial bulk goods conveyors can range 
from a few meters to several thousand meters 
(Hilgraf, 2019). The test plant examined in this 
use case has a conveying distance of 40 m.

A process plagued by uncertainties

The conveying of bulk goods is a process 
 subject to a large number of uncertainties. 
Firstly, the various conveyable products have 
very  different properties – for example, they 
can be coarse or as fine as dust, or can have 
diameters ranging from just a few micrometers 
to  several centimeters. Moreover, when pro­
cessing natural products such as nuts, there 
are often geometric differences between one 
 product batch and the next. The material and 
flow properties of many bulk goods are also 
often dependent on weather conditions such  
as temperature and humidity. The dynamic 
 process behavior brings further uncertainties; 
for example, there is a risk of a pipe suddenly 
becoming blocked during conveyance. This 
always  happens when more material is fed  
in than can be transported away via the cur­
rent air flow. Such blockages often occur 
 unexpectedly and in most cases cannot be 
remedied automatically. In many cases, the 
pipe can only be unblocked again through 
manual intervention. 

Due to the large number of uncertainties and 
the high maintenance effort in the event of a 
blockage, until now the conveying process  
was designed in a very conservative manner.  
As such, a robust flow process could be guar­
anteed even under unfavorable conditions.  
With the use of artificial intelligence, efforts  
are now being made to always keep the flow 
 process in the optimal operating point and  
thus achieve a significant increase in efficiency 
in terms of the conveyed quantity.

Figure 21: Pneumatic bulk goods conveyor in the development center of 
AZO GmbH + Co. KG.

Example application

Self-learning process on a bulk goods conveyor
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A model-based reinforcement learning 
method was used for this. The model­based 
approach was chosen due to its data efficiency 
in particular. Specifically, a guided policy search 
method was used.

Learning process

Like the autonomous assembly process, the 
learning process is structured into episodes.  
This means that three different training runs  
are conducted and the state, action and cost 
 values recorded. Using this training data, the 
system learns a current policy. This policy is then 
used for the next training cycle and is overlaid  
by noise. The addition of noise to the policy is 
 especially important so that previously unknown 
states can also be reached. The conveying 
 process of the bulk goods conveyor can be 
divided into three phases: the startup phase, the 
conveying phase and the deceleration phase. 
The entire process takes 90 seconds. As the 
individual training runs always have to start with 
the same initial state, the pipe is first cleared 
after a training run. At the beginning of training, 
an initial  policy is selected as the starting point.  
When choosing this policy, robustness is 
 prioritized ahead of the performance of the 
plant; however, an acceptable flow behavior 
should still have been achieved.

The objectives of a self­learning control system 
for the bulk goods conveyor can thus be 
summed up as follows:

• The control strategy must be capable of 
 independently adapting to new materials and 
environmental conditions.

• The control strategy must be as close to the 
optimal operating point as possible.

• The control strategy must have robust 
 behavior in an environment characterized  
by uncertainties. 

Reinforcement learning setting

As described in the guiding questions, the state 
space and action space will first be defined.

The continuous state space consists of a total 
of 18 sensors. These include 

• 8 pressure sensors at various locations  
in the pipe 

• 1 temperature sensor
• 1 humidity sensor
• 4 sensors for measuring the air and product 

speed at various locations in the pipe 
• 1 virtual blockage sensor

The virtual blockage sensor assumes that a 
blockage is present when the air speed inside 
the pipe is zero. 

The action space is also continuous and 
 consists of the fan and the metering screw  
at the plant inlet. Both actuators are subject  
to technical constraints comprising a minimum 
and  maximum speed and a safety mechanism.

In order to define a cost function, a good 
 process behavior needs to be described in  
the next step. This can be defined using  
three  criteria. Firstly, the actuators must 
behave as smoothly as possible in order  
to prevent unnecessary wear. In addition,  
the highest  possible material throughput  
should be  conveyed and blockages should  
be prevented.
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Figure 22: Conveying a plastic granulate. The blue trajectories show the 
conveying behavior of the initially chosen policy. The efficiency was 
increased by 31% during the course of the training.
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maximum possible mass flow is the bulk 
 density of a  product: A lower bulk density 
means that the maximum mass flow is lower. 
Therefore, the  factor of bulk density must be 
deducted from the performance. If this factor is 
eliminated, the policy for the S­PVC powder, 
applied to the conveyance of mustard flour, can 
achieve a similarly good conveying behavior  
to the original training process. Between 75 and 
100% of the original conveying performance  
is achieved using this method, as shown in 
 Figure 24. When applying this policy, the con­
veying time was also extended from the original 
90 seconds to 180 seconds while retaining the 
same level of efficiency. This shows that the 
learned policy also results in robust and effi­
cient control of the bulk goods  conveyor outside 
the training time. 

All in all, the application on the bulk goods 
 conveyor made it possible to highlight the 
potential of the reinforcement learning of 
 complex and efficient control strategies. This 
control strategy can also be applied to new  
and unknown bulk goods and is capable  
of reacting to temperature and humidity fluc­
tuations in a robust manner. 

Results

First of all, a scenario for conveying a plastic 
powder (S­PVC) was tested. At the beginning 
of training, an initial policy was selected;  
this is shown in blue in Figure 22. This was 
 followed by four training iterations. After this 
training, an average gain in mass flow of  
31% was achieved. This result illustrates the 
enormous potential of reinforcement learning  
in industry.

After learning the process for the S­PVC 
 powder, the learned policy was applied to the 
mustard flour raw material. Mustard flour has a 
different bulk density and, unlike plastic powder, 
is an oily product. As a result, its flow behavior 
is very  different. One important factor for pneu­
matic  conveyance and therefore also for the 
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Figure 24: Application of the policy for plastic powder to mustard flour. 
The blue trajectory shows the originally learned policy for plastic powder. 
Using this policy, the material was initially conveyed over a longer period 
of 120 or 180 seconds.
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Figure 23: The policy learned for the training product is now applied to the mustard flour test product.
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The application on the bulk goods conveyor has 
confirmed the enormous potential of industrial 
reinforcement learning. Reinforcement learning 
makes it possible to control processes for which 
modeling with conventional methods would be 
too complex. As well as increasing efficiency 
compared to conventional control systems,  
the often time­consuming manual setting of the 
plant parameters is also no longer necessary. 
However, experience also shows that this kind 
of self­learning control either offers a great 
increase in efficiency or fails completely. 
 Accordingly, reinforcement learning is not a 
 simple introduction to the world of artificial 
 intelligence. 

Today, the potential of reinforcement learning 
as part of machine learning is only being 
 discovered slowly. As a result, this topic is  
not yet being taught to a sufficient degree  
at universities and there is still a need for 
research. For the application on the bulk goods 
conveyor, an especially robust variant of a 
guided policy search algorithm was developed. 
The question remains as to whether such an 
algorithm can be applied to further scenarios. 
Further  application­oriented fundamental 
research is needed here in order to develop 
new fields of application and corresponding 
algorithms for reinforcement learning. In 
 particular, the special requirements of industry 
regarding safety and robustness must be  
met when developing these algorithms.

In industry, high expectations have been 
attached to big data over the last few years. 
Today, however, there is a trend away from  
big data and towards smart data. Contrary to 
the widespread belief that large quantities of 
data are available in industry, there are still 
many scenarios in which no comprehensive 
data  collection is possible, for example in  
the area of special mechanical engineering. 
Especially data­efficient methods are required 
for these applications. Reinforcement learning 
fits in with this trend as only selected data that 
is tailored to the specific application needs to 
be collected.

Another trend is that away from central  
data processing in the cloud and towards 
increasingly decentralized processing. This 
bring advantages in the area of security and 
data  protection, as well as in enabling existing 
real­time requirements to be met. The first 
industrial PCs are now available with an inte­
grated machine learning chip, on which already 
trained models can be calculated. The focus 
here is usually on image recognition models 
with a direct camera interface, but special 
 reinforcement learning modules are also 
 conceivable in the future.

Summary and outlook
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